Graphing, Continuity, and Limits for Rational Functions

Sketch the function $f(x) = \frac{x^2 - x - 6}{x^2 + x - 12}$ and complete the following:

f(x) has a 1) vertical asymptote at x = _____

- 2) horizontal asymptote of y =
- 3) x intercept of _____
- 4) y intercept of _____
- 5) <u>removable</u> discontinuity at x = _____

and a 6) non-removable discontinuity at x = _____

Evaluate the following:

7)
$$f(-4) =$$
 8) $f(-2) =$ 9) $f(0) =$ 10) $f(3) =$

8)
$$f(-2) =$$

9)
$$f(0) =$$

10)
$$f(3) =$$

Evaluate the following limits or state "does not exist"

11)
$$\lim_{x \to -2} f(x) = \underline{\hspace{1cm}}$$

16)
$$\lim_{x \to -4^{-}} f(x) = \underline{\hspace{1cm}}$$

12)
$$\lim_{x \to 0} f(x) = \underline{\hspace{1cm}}$$

17)
$$\lim_{x \to -4^+} f(x) = \underline{\hspace{1cm}}$$

13)
$$\lim_{x \to 3^{-}} f(x) = \underline{\hspace{1cm}}$$

18)
$$\lim_{x \to -4} f(x) = \underline{\hspace{1cm}}$$

14)
$$\lim_{x \to 3^+} f(x) = \underline{\hspace{1cm}}$$

$$19) \quad \lim_{x \to +\infty} f(x) = \underline{\hspace{1cm}}$$

15)
$$\lim_{x \to 3} f(x) = \underline{\hspace{1cm}}$$

$$20) \quad \lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$$

(Form A)

Answer Key

Graphing, Continuity, and Limits for Rational Functions

Sketch the function $f(x) = \frac{x^2 - x - 6}{x^2 + x - 12}$ and complete the following:

$$f(x) = \frac{x^2 - x - 6}{x^2 + x - 12} = \frac{(x - 3)(x + 2)}{(x + 4)(x - 3)} = \frac{(x + 2)}{(x + 4)}, \text{ for } x \neq 3$$

f(x) has a 1) vertical asymptote at x = -4

- 3) x intercept of -2
- 4) $y = intercept of \frac{1/2}{2}$

5) <u>removable</u> discontinuity at x = 3

and a 6) non-removable discontinuity at $x = \frac{-4}{}$

Evaluate the following:

7)
$$f(-4) = Undef.$$

8)
$$f(-2) = 0$$

9)
$$f(0) = \frac{1}{2}$$

7)
$$f(-4) = \underline{\text{Undef}}$$
. 8) $f(-2) = \underline{0}$ 9) $f(0) = \underline{\frac{1}{2}}$ 10) $f(3) = \underline{\text{Undef}}$.

Evaluate the following limits or state "does not exist"

11)
$$\lim_{x \to -2} f(x) = 0$$

16)
$$\lim_{x \to -4^{-}} f(x) = +\infty$$

12)
$$\lim_{x \to 0} f(x) = 1/2$$

17)
$$\lim_{x \to -4^+} f(x) = \underline{-\infty}$$

13)
$$\lim_{x \to 3^{-}} f(x) = \underline{5/7}$$

18)
$$\lim_{x \to -4} f(x) = \underline{\text{D.N.E.}}$$

14)
$$\lim_{x \to 3^+} f(x) = \underline{5/7}$$

19)
$$\lim_{x \to +\infty} f(x) = 1$$

15)
$$\lim_{x \to 3} f(x) = \underline{5/7}$$

20)
$$\lim_{x \to -\infty} f(x) = 1$$

(Form A)