Graphing, Continuity, and Limits for RationalFunctions

Sketch the function $f(x)=\frac{x^{2}-x-6}{x^{2}+x-12}$ and complete the following:
$f(x)$ has a 1) vertical asymptote at $\mathrm{x}=$ \qquad
2) horizontal asymptote of $y=$ \qquad
3) x - intercept of \qquad

4) y - intercept of \qquad
5) removable discontinuity at $x=$ \qquad and a 6) non-removable discontinuity at $x=$ \qquad
Evaluate the following:
7) $f(-4)=$ \qquad
8) $f(-2)=$ \qquad 9) $f(0)=$ \qquad 10) $f(3)=$ \qquad

Evaluate the following limits or state "does not exist"
11) $\lim _{x \rightarrow-2} f(x)=$ \qquad 16) $\lim _{x \rightarrow-4^{-}} f(x)=$ \qquad
12) $\lim _{x \rightarrow 0} f(x)=$ \qquad 17) $\lim _{x \rightarrow-4^{+}} f(x)=$ \qquad
13) $\lim _{x \rightarrow 3^{-}} f(x)=$ \qquad 18) $\lim _{x \rightarrow-4} f(x)=$ \qquad
14) $\lim _{x \rightarrow 3^{+}} f(x)=$ \qquad
15) $\lim _{x \rightarrow 3} f(x)=$ \qquad
19) $\lim _{x \rightarrow+\infty} f(x)=$ \qquad
20) $\lim _{x \rightarrow-\infty} f(x)=$ \qquad
(Form A)

Answer Key
 Graphing, Continuity, and Límits for RationalFunctions

Sketch the function $f(x)=\frac{x^{2}-x-6}{x^{2}+x-12}$ and complete the following:
$f(x)=\frac{x^{2}-x-6}{x^{2}+x-12}=\frac{(x-3)(x+2)}{(x+4)(x)}=\frac{(x+2)}{(x+4)}$, for $x \neq 3$
$f(x)$ has a 1) vertical asymptote at $\mathrm{x}=\underline{-4}$
2) horizontal asymptote of $y=1$
3) x - intercept of -2
4) y - intercept of $1 / 2$

5) removable discontinuity at $x=$ \qquad
and a 6) non-removable discontinuity at $x=$ \qquad
Evaluate the following:
7) $f(-4)=\underline{\text { Undef. }}$.
8) $f(-2)=0$
9) $f(0)=1 / 2$
10) $f(3)=\underline{\text { Undef. }}$

Evaluate the following limits or state "does not exist"
11) $\lim _{x \rightarrow-2} f(x)=0$
12) $\lim _{x \rightarrow 0} f(x)=1 / 2$
13) $\lim _{x \rightarrow 3^{-}} f(x)=5 / 7$
14) $\lim _{x \rightarrow 3^{+}} f(x)=5 / 7$
15) $\lim _{x \rightarrow 3} f(x)=5 / 7$
16) $\lim _{x \rightarrow-4^{-}} f(x)=+\infty$
17) $\lim _{x \rightarrow-4^{+}} f(x)=-\infty$
18) $\lim _{x \rightarrow-4} f(x)=\underline{\text { D.N.E. }}$
19) $\lim _{x \rightarrow+\infty} f(x)=1$
20) $\lim _{x \rightarrow-\infty} f(x)=1$
(Form A)

